Al in Longevity: How Artificial Intelligence Is Discovering Age-Delaying Medicines

Introduction

Ageing is considered to be the most significant risk factor for the most prevalent diseases of
developed countries: cancer, cardiovascular diseases and neurodegeneration (Niccoli and

Partridge, 2012). Yet, many in the general public and the scientific community accept it as an
inevitable, natural process that we should not interfere with. But if it is the underlying cause
of so many pathologies, why not treat it as a disease? And if we do consider it to be one, can

we one day cure it?

These are the questions that have preoccupied the brightest minds in longevity and
geroscience for decades. In recent years, studies have uncovered many causal mechanisms
of ageing and discovered possible interventions to slow down, or even reverse, its
progression. Among these, some pharmaceutical interventions, such as caloric restriction

mimetics and senolytics, are showing some encouraging results (Hassani et al., 2022)

In the era of technological advancement, artificial intelligence (Al) is transforming the field of
biomedical research. Many Al tools are utilised to find, predict, analyse and evaluate new
medical interventions with unmatched speed and efficiency. Longevity scientists are
embracing innovations to identify longevity- and healthspan-promoting molecules. This

essay explores the past, present, and future uses of Al in the discovery of such compounds.

The Science of Ageing

Before jumping into the discussion, it is essential to establish what is meant by 'ageing'. A
person’s chronological age is simply the time passed since their birth, whereas the term
‘biological ageing’ refers to the more complex concept of accumulation of cellular damage
over time that leads to the deterioration of the individual’s physiological state, which

increases vulnerability to disease and death. The two types of ageing may occur at different



paces for the same individual, as unlike chronological age, biological ageing is impacted by

factors such as lifestyle, diet, genetics and environment (Morales-Brown, 2025).

Scientists have discovered nine of the most prominent and reliable hallmarks of biological
ageing, and they are theorised to not only indicate but also cause ageing. Those are
epigenetic alterations, telomere attrition, genomic instability, cellular senescence and others
presented in Figure 1. The hallmarks are all interconnected and occur during both ‘normal-
paced’ and accelerated ageing (Lopez-Otin et al., 2013). Biological ageing is often quantified
by ‘epigenetic clocks’ that estimate biological age by measuring the person’s DNA
methylation levels. DNA methylation is the addition of methyl tags (-CHs3) to DNA sequences,
which regulates gene expression, and the patterns of these tags change in a predictable
manner with age (Moore, Le and Fan, 2012). By analysing methylation at specific, ageing-
related genomic locations, an individual’s biological age, which can also be referred to as

‘epigenetic age’, can be estimated with great accuracy (Horvath, 2013).
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Figure 1. Diagram displaying the nine hallmarks of ageing (Lépez-Otin et al., 2013).



Existing Anti-Ageing Compounds

There are many molecular pathways underlying ageing, and scientists are developing
therapies, such as pharmaceuticals or lifestyle interventions, that target those pathways to
slow down or reverse ageing. One of the more famous types of medicines used to promote
longevity is caloric restriction mimetics. Caloric restriction (CR) is a reduction in caloric intake
without malnutrition, and it has been shown to prolong the lifespans of many common
model species used in longevity research, such as mice, yeast and roundworms (Madeo et
al., 2019; Andrea Di Francesco et al., 2024; Leonov et al., 2017; Smith et al., 2008). The first
controlled study of the effects of long-term CR on longevity of humans ‘CALERIE’ showed a
decrease in the pace of ageing, as measured by Dunedin PACE epigenetic clock (Ryan et al.,

2024).

Geroprotectors are a class of molecules that are capable of slowing the processes of ageing
in model organisms (Moskalev et al., 2017). Many compounds have been found to target
molecular pathways inhibited or activated during CR. One of the more studied longevity
medicines is rapamycin, an antifungal and immunosuppressive compound discovered in the
1970s from Streptomyces hygroscopicus on Easter Island (Roark and Iffland, 2025). It
suppresses mTOR (mechanistic Target of Rapamycin), a nutrient and energy-sensing pathway
that regulates growth and metabolism, which affects many hallmarks of ageing (Stallone et
al., 2019). Rapamycin has displayed an extension of lifespans of mice, fruit flies, nematodes
and yeasts (Harrison et al., 2009; Bjedov et al., 2010; Zhang et al., 2024; Powers, 2006).
However, it has been noted that prolonged use of rapamycin could lead to liver damage,
inflammation and tumorigenesis, which highlights the need for the discovery of safer

compounds that target mTOR (Umemura et al., 2014).

Metformin, a common and safe type Il diabetes medicine, has shown to activate AMPK,
which reduces inflammation, inhibits mTOR and enhances autophagy and DNA-repair, which
in turn prolong longevity. The drug was discovered way back in the 17" century from a
French lilac Galega officinalis, which contains metformin-like guanidine compounds that

regulate blood glucose levels (Soukas, Hao and Wu, 2019). The geroprotective effects of



metformin mimic those of dietary restriction, and diabetic patients taking the drug have
observed a reduced incidence of cancer, cardiovascular disease, and overall mortality

(Barzilai et al., 2016).

An important therapeutic longevity target is cellular senescence. Senescent cells, sometimes
called zombie cells, are cells that exited the cell cycle without undergoing apoptosis (cell
death), and continue to secrete inflammatory compounds (named SASP (senescence-
associated secretory phenotype)) that can damage neighbouring cells (as shown by Figure
2). They have an important role in embryonic development, childbirth, and wound healing;
however, their accumulation contributes to many age-related diseases and, as a result, is

considered a hallmark of ageing (National Institute on Aging, 2021).
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Figure 2. Diagram illustrating cellular senescence (Kalser, 2024).

Senolytics are compounds that selectively kill senescent cells by disabling their survival
networks called SCAPs. Senolytics can temporarily disable SCAP networks to allow apoptosis.
(Hickson et al., 2019). These compounds were discovered by working backwards from the

identification of these networks: the researchers proved the vitalness of SCAP for



senescence and repurposed existing pharmacology to target it. A study testing a
combination of senolytics — Dasatinib and Quercetin — showed a prolonged healthspan and

delayed onset of age-related diseases in mice (Zhu et al., 2015).

All of the previously mentioned medicines demonstrate the possibility of treating ageing
pharmacologically. However, their discovery relied on observations and classical biochemical
approaches. These are costly, slow, and based on trial-and-error in wet laboratories. Because
there is a clear need for designing and testing new, safer and more effective compounds to

extend lifespan, Al has been employed to accelerate this process.

Al and Biomedical Research

Artificial Intelligence (Al) is a broad term for novel technologies that simulate human
intelligence to perform tasks like problem-solving and decision-making. This field of science
was formally established in 1956 at the Dartmouth Workshop, organised by John McCarthy
(Tableau, 2025). There are various subsets of Al, such as machine learning and deep
learning, that are frequently utilised for medical research. Machine learning (ML) is a
computer system that can “learn and improve from experience without being explicitly
programmed”, whereas deep learning (DL) is a subfield of ML that uses artificial neural
networks to learn from large datasets (University of North Florida, Office of Faculty

Excellence, 2025).

Al is used by researchers to identify patterns and correlations within enormous, complex
datasets, such as genomic and proteomic data. These datasets are very difficult to analyse,
and the specific relationships can often be missed by the human eye due to the large
number of variables. Employing Al for these tasks not only accelerates the process but also

leads to new therapeutic targets that would not have existed without it. (Cook, 2024).

Moreover, deep learning was used by Google DeepMind to develop a system to predict the
three-dimensional structure of a protein from its amino acid sequence, called AlphaFold

(Jumper et al., 2021). This technology has many implications in biomedical research, such as



studying pathologies associated with protein misfolding and dysfunction (including cancer
and rheumatoid arthritis), synthesising novel proteins with specific functions to treat
diseases, and examining the impact of DNA and mRNA mutations on proteins’ structure and

stability (Geek Nomad, 2024; Pak et al., 2023).

Many other implications of Al include diagnostic imaging (for diseases such as skin cancer)
(Frasier et al., 2025), helping healthcare professionals better diagnose patients by providing
a second opinion, predicting pathologies like sepsis (Haas and McGill, 2022), and countless
others. Al, with its ability to analyse giant datasets in seconds, is transforming the efficiency
and accuracy of research in all aspects of science. It has been especially useful in identifying,
predicting and analysing novel medicines against countless illnesses. Naturally, the field of

longevity is not behind in the use of this powerful tool.

Al in Longevity Research

This section will explore the implications of Al in identifying biological pathways to target
with medicines, generating new or repurposing existing compounds for pro-longevity

purposes, as well as validating and testing them for clinical use.

a. Al and Target |dentification

The complicated nature of ageing biology (involving interconnected pathways such as
previously mentioned mTOR, AMPK, senescence and many others) traditionally required
years of laboratory research to find specific druggable targets. This heterogeneous cause of
age-related diseases often leads to poor efficacy of existing interventions, in part because of
inadequate target choice or the inability to find the group of patients who respond best to

the treatment (Zhavoronkov, 2022). This is where Al can step in.

Al is increasingly being applied to multi-omics data to distinguish new longevity targets.
Multi-omics data, consisting of genomic (whole genome sequencing), transcriptomic (RNA

sequencing), proteomic (proteins and their structure) and metabolomic (end products of



cellular metabolism) data, change with age (Baido et al., 2025). Software PandaOmics,
developed by Insilico Medicine, identifies novel targets by applying deep learning models to
this multimodal omics data, as well as evaluating background evidence to short-list the most

promising targets (Kamya et al., 2024).

b. Repurposing and Generating Compounds with Al

The approach of applying machine learning to complex data is also used to identify
compounds that already exist to be repurposed to target ageing-associated pathways. In
Ribeiro et al’s (2023) study, the team trained a machine learning classifier on DrugAge data
(a database of longevity compounds (Barardo et al., 2017)) to predict not only the chemical
structure of compounds but also the biological pathways and proteins targeted by the
molecules. This model can tell whether a certain molecule has lifespan-extending properties,
and demonstrates how Al can simultaneously identify geroprotective medicines and
generate their mechanistic hypotheses, highlighting the great potential for repurposing

molecules for longevity-related uses (Ribeiro et al., 2023).

Al is also being used to generate new chemical compounds from scratch that exhibit pro-
longevity properties. An example of this can be seen in Insilico Medicine, which employs
deep learning at multiple stages of dual-purpose (ageing and age-related diseases) drug
discovery. After identifying the biological target with PandaOmics, they employ the
Chemistry42 platform, which uses a novel Al technique called generative adversarial
networks (GANs) to create molecules that specifically work on the targets (Insilico Medicine,
2024; Diamandis, 2022). So far, they have successfully developed a TNIK inhibitor (TNIK is an
enzyme involved in signal transduction, gene transcription, and cytoskeletal organisation
(National Centre for Biotechnology Information, 2025)) that has been effective at targeting

idiopathic pulmonary fibrosis in both pre-clinical and clinical models.



c. Testing and Validation with Al

At the very early stages of drug development, many in silico (on a computer or a virtual
simulation) tests are conducted to try to predict the success of a certain molecule, prior to in
vivo testing. A good example of this approach would be Insilico’s InClinico Al platform, which
can predict the probability of success of the individual trials of their newly generated

compounds to assess whether they should be tested further (Insilico Medicine, 2020).

Al can also be used to develop new biomarkers to measure the rate of ageing, which is
especially useful in trials of geroprotective molecules. The previously mentioned epigenetic
clocks are statistical models that quantify the biological age of an organism; this is achieved
by analysing DNA methylation levels at specific CpG sites (locations within the genome). In
Dr. Steve Horvath’s first-ever-created epigenetic clock (2013), he employed an elastic net
regression ML algorithm to assign how much individual CpG sites correlate with ageing.

In my own research project, | used a publicly available Al tool ‘ChatGPT’ to apply the Meer et
al. (2018) epigenetic clock formula to a DNA methylation dataset of mice that underwent an
endurance training program (as well as a control group) to investigate exercise’s effect on
ageing. Despite the investigation not focusing on pharmacological intervention, this
exemplifies how Al improves the efficiency of research by conducting mathematical tasks to
quantify the impacts of the intervention on ageing, as if | chose to perform the calculation by

hand, it would have taken me significantly more time.

Lastly, Al platforms are embedded within feedback loops. Both positive and negative results
from in vitro and in vivo trials are analysed by the Al algorithms that repurpose and generate

new compounds to improve their future predictions through active learning.

d. Case-study: SYDRA Biotech

The co-founder of SYDRA, Dr. Alexander Dakhovnik, has kindly agreed to give me an

interview about the company’s work on developing geroprotectors using artificial

intelligence. At SYDRA, they approach the process of drug discovery from a different angle —



instead of identifying a biological target, they begin with a molecule. They first use an
artificial neural network (ANN) to identify the promising compound, then test it in silico and
in C. elegans (roundworms), and only then start the process of pinpointing the biological
target of the drug. As Dr. Dakhovnik stated in the interview, ‘we decided to reverse engineer

drug discovery — from phenotype to target, not from target to phenotype’.

The company has developed a novel Al molecule discriminator that predicts whether a
compound has anti-ageing properties. Their ANN, essentially being an ‘Al chemist’, was first
trained on a large database of small molecules and then fine-tuned on a dataset of
geroprotectors. Using this tool, 11 molecules were identified as safe and likely to prolong
longevity, 5 of which have shown lifespan prolongation of 6-14.5% in C. elegans. Some of
them were then tested in mice, with 2 being particularly successful at lifespan extension,
achieving an impressive median lifespan elongation of 23% and 29% (Dr. Alexander

Dakhovnik, personal communication, August 2025).

The process of in vivo testing of the identified molecules at SYDRA happens in C. elegans
model organisms and is optimised using the automated NemaBot roundworm lifespan
assays. Instead of relying on manual monitoring, SYDRA employs Al to scan and analyse the
worms’ activity to detect their ageing progression with and without the pharmacological

intervention (Dr. Alexander Dakhovnik, personal communication, August 2025).

A big challenge faced by SYDRA was the fact that ageing itself is not classified as a disease
(yet), and therefore cannot be treated directly. As their main goal was to show the extension
of lifespan, which Dr Dakhovnik believes to be the only valid indicator of true age-targeting,
geroprotective interventions, to commercialise the discovered molecule they have to prove
that the compound treats an FDA-approved age-related disease. To do this, they plan to
employ whole-genome CRISPR-Cas screenings to identify which proteins were targeted, and
therefore which age-related disease the compound might affect the most. This approach is

called a target deconvolution.

They have also started to develop another Al model that generates completely novel

molecules from noise to act as geroprotectors. They have partnered with Enamine to



synthesise those generated molecules to test them in vivo, which might produce promising

results.

The Future of Al in Ageing

There is no doubt that artificial intelligence will play a larger and larger role in the years to
come. Its use in longevity will decrease the drug discovery timeline from prediction to
clinical testing, by both employing the previously mentioned approaches and discovering
new ways to streamline the process, compressing the pathway to just a few years or even

months.

One key future implication of Al is personalised medicine. By integrating deep learning
models that work on even larger multimodal datasets (that might include not only omics
data but also imaging, clinical history and other variables), the algorithms might be able to
predict exactly how and which geroprotectors will most likely extend the patient’s lifespan

and help cure their age-related diseases.

However, there are some challenges to the Al-optimised drug discovery. A vital limitation is
data bias, since most training data for Al may come from small and genetically similar
cohorts, which may not represent the global diversity and better suit certain groups of
people. A big hurdle is the regulatory institutions’ (such as the FDA and EMA) slow
adaptation to quick progress in Al-found molecules and Al-reliant trial protocols, as well as
their reluctance to classify ageing as a disease. Due to this, it is difficult for researchers to
trial their geroprotective molecules in Homo sapiens, which is vital for knowing whether
they truly prolong human lives. Another problem that may arise is the accessibility of those
novel medicines, as there is a risk that they will be expensive and not equally distributed,
contributing to disparity within society. Nonetheless, the potential of Al scaling and
shortening the molecule discovery process might reduce the costs, contributing to better

equality.
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Conclusion

As seen by examples provided in this essay, such as enhanced molecule generation and
repurposing, advanced biological target identification, and validation process optimisation,
Al is already accelerating drug discovery at unmatched speeds. The future of the industry
seems incredibly promising, with countless possible new uses of Al in the field and many yet-

to-come medicines potentially extending the lifespans of millions of people.

The biggest takeaway from this is that Al is not here to replace hardworking scientists —it is a
powerful tool that only works alongside qualified specialists to supercharge and, in the case
of SYDRA, completely change the traditional drug discovery pipeline to open doors to many

novel pharmacological interventions that can prolong healthy human lives.
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