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AI in Longevity: How Ar1ficial Intelligence Is Discovering Age-Delaying Medicines 
 

Introduc)on 

 

Ageing is considered to be the most significant risk factor for the most prevalent diseases of 

developed countries: cancer, cardiovascular diseases and neurodegenera;on (Niccoli and 

Partridge, 2012). Yet, many in the general public and the scien;fic community accept it as an 

inevitable, natural process that we should not interfere with. But if it is the underlying cause 

of so many pathologies, why not treat it as a disease? And if we do consider it to be one, can 

we one day cure it?  

 

These are the ques;ons that have preoccupied the brightest minds in longevity and 

geroscience for decades. In recent years, studies have uncovered many causal mechanisms 

of ageing and discovered possible interven;ons to slow down, or even reverse, its 

progression. Among these, some pharmaceu;cal interven;ons, such as caloric restric;on 

mime;cs and senoly;cs, are showing some encouraging results (Hassani et al., 2022) 

  

In the era of technological advancement, ar;ficial intelligence (AI) is transforming the field of 

biomedical research. Many AI tools are u;lised to find, predict, analyse and evaluate new 

medical interven;ons with unmatched speed and efficiency. Longevity scien;sts are 

embracing innova;ons to iden;fy longevity- and healthspan-promo;ng molecules. This 

essay explores the past, present, and future uses of AI in the discovery of such compounds.  

 

The Science of Ageing  

 

Before jumping into the discussion, it is essential to establish what is meant by 'ageing'. A 

person’s chronological age is simply the ;me passed since their birth, whereas the term 

‘biological ageing’ refers to the more complex concept of accumula;on of cellular damage 

over ;me that leads to the deteriora;on of the individual’s physiological state, which 

increases vulnerability to disease and death. The two types of ageing may occur at different 
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paces for the same individual, as unlike chronological age, biological ageing is impacted by 

factors such as lifestyle, diet, gene;cs and environment (Morales-Brown, 2025).  

 

Scien;sts have discovered nine of the most prominent and reliable hallmarks of biological 

ageing, and they are theorised to not only indicate but also cause ageing. Those are 

epigene;c altera;ons, telomere aXri;on, genomic instability, cellular senescence and others 

presented in Figure 1. The hallmarks are all interconnected and occur during both ‘normal-

paced’ and accelerated ageing (López-O]n et al., 2013). Biological ageing is o_en quan;fied 

by ‘epigene;c clocks’ that es;mate biological age by measuring the person’s DNA 

methyla;on levels. DNA methyla;on is the addi;on of methyl tags (-CH3) to DNA sequences, 

which regulates gene expression, and the paXerns of these tags change in a predictable 

manner with age (Moore, Le and Fan, 2012). By analysing methyla;on at specific, ageing-

related genomic loca;ons, an individual’s biological age, which can also be referred to as 

‘epigene;c age’, can be es;mated with great accuracy (Horvath, 2013).  

 

  
Figure 1. Diagram displaying the nine hallmarks of ageing (López-O]n et al., 2013).  
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Exis)ng An)-Ageing Compounds 

 

There are many molecular pathways underlying ageing, and scien;sts are developing 

therapies, such as pharmaceu;cals or lifestyle interven;ons, that target those pathways to 

slow down or reverse ageing. One of the more famous types of medicines used to promote 

longevity is caloric restric;on mime;cs. Caloric restric;on (CR) is a reduc;on in caloric intake 

without malnutri;on, and it has been shown to prolong the lifespans of many common 

model species used in longevity research, such as mice, yeast and roundworms (Madeo et 

al., 2019; Andrea Di Francesco et al., 2024; Leonov et al., 2017; Smith et al., 2008). The first 

controlled study of the effects of long-term CR on longevity of humans ‘CALERIE’ showed a 

decrease in the pace of ageing, as measured by Dunedin PACE epigene;c clock (Ryan et al., 

2024).  

 

Geroprotectors are a class of molecules that are capable of slowing the processes of ageing 

in model organisms (Moskalev et al., 2017). Many compounds have been found to target 

molecular pathways inhibited or ac;vated during CR. One of the more studied longevity 

medicines is rapamycin, an an;fungal and immunosuppressive compound discovered in the 

1970s from Streptomyces hygroscopicus on Easter Island (Roark and Iffland, 2025). It 

suppresses mTOR (mechanis;c Target of Rapamycin), a nutrient and energy-sensing pathway 

that regulates growth and metabolism, which affects many hallmarks of ageing (Stallone et 

al., 2019). Rapamycin has displayed an extension of lifespans of mice, fruit flies, nematodes 

and yeasts (Harrison et al., 2009; Bjedov et al., 2010; Zhang et al., 2024; Powers, 2006). 

However, it has been noted that prolonged use of rapamycin could lead to liver damage, 

inflamma;on and tumorigenesis, which highlights the need for the discovery of safer 

compounds that target mTOR (Umemura et al., 2014).  

 

Meoormin, a common and safe type II diabetes medicine, has shown to ac;vate AMPK, 

which reduces inflamma;on, inhibits mTOR and enhances autophagy and DNA-repair, which 

in turn prolong longevity. The drug was discovered way back in the 17th century from a 

French lilac Galega officinalis, which contains meoormin-like guanidine compounds that 

regulate blood glucose levels (Soukas, Hao and Wu, 2019). The geroprotec;ve effects of 
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meoormin mimic those of dietary restric;on, and diabe;c pa;ents taking the drug have 

observed a reduced incidence of cancer, cardiovascular disease, and overall mortality 

(Barzilai et al., 2016).  

 

An important therapeu;c longevity target is cellular senescence. Senescent cells, some;mes 

called zombie cells, are cells that exited the cell cycle without undergoing apoptosis (cell 

death), and con;nue to secrete inflammatory compounds (named SASP (senescence-

associated secretory phenotype)) that can damage neighbouring cells (as shown by Figure 

2). They have an important role in embryonic development, childbirth, and wound healing; 

however, their accumula;on contributes to many age-related diseases and, as a result, is 

considered a hallmark of ageing (Na;onal Ins;tute on Aging, 2021).  

 

 
Figure 2. Diagram illustra;ng cellular senescence (Kalser, 2024).  

 

Senoly;cs are compounds that selec;vely kill senescent cells by disabling their survival 

networks called SCAPs. Senoly;cs can temporarily disable SCAP networks to allow apoptosis. 

(Hickson et al., 2019). These compounds were discovered by working backwards from the 

iden;fica;on of these networks: the researchers proved the vitalness of SCAP for 
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senescence and repurposed exis;ng pharmacology to target it.  A study tes;ng a 

combina;on of senoly;cs – Dasa;nib and Querce;n – showed a prolonged healthspan and 

delayed onset of age-related diseases in mice (Zhu et al., 2015).  

 

All of the previously men;oned medicines demonstrate the possibility of trea;ng ageing 

pharmacologically. However, their discovery relied on observa;ons and classical biochemical 

approaches. These are costly, slow, and based on trial-and-error in wet laboratories. Because 

there is a clear need for designing and tes;ng new, safer and more effec;ve compounds to 

extend lifespan, AI has been employed to accelerate this process.  

 

AI and Biomedical Research 

 

Ar;ficial Intelligence (AI) is a broad term for novel technologies that simulate human 

intelligence to perform tasks like problem-solving and decision-making. This field of science 

was formally established in 1956 at the Dartmouth Workshop, organised by John McCarthy 

(Tableau, 2025). There are various subsets of AI, such as machine learning and deep 

learning, that are frequently u;lised for medical research. Machine learning (ML) is a 

computer system that can “learn and improve from experience without being explicitly 

programmed”, whereas deep learning (DL) is a subfield of ML that uses ar;ficial neural 

networks to learn from large datasets (University of North Florida, Office of Faculty 

Excellence, 2025).  

 

AI is used by researchers to iden;fy paXerns and correla;ons within enormous, complex 

datasets, such as genomic and proteomic data. These datasets are very difficult to analyse, 

and the specific rela;onships can o_en be missed by the human eye due to the large 

number of variables. Employing AI for these tasks not only accelerates the process but also 

leads to new therapeu;c targets that would not have existed without it. (Cook, 2024).  

 

Moreover, deep learning was used by Google DeepMind to develop a system to predict the 

three-dimensional structure of a protein from its amino acid sequence, called AlphaFold 

(Jumper et al., 2021). This technology has many implica;ons in biomedical research, such as 
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studying pathologies associated with protein misfolding and dysfunc;on (including cancer 

and rheumatoid arthri;s), synthesising novel proteins with specific func;ons to treat 

diseases, and examining the impact of DNA and mRNA muta;ons on proteins’ structure and 

stability (Geek Nomad, 2024; Pak et al., 2023). 

 

Many other implica;ons of AI include diagnos;c imaging (for diseases such as skin cancer) 

(Frasier et al., 2025), helping healthcare professionals beXer diagnose pa;ents by providing 

a second opinion, predic;ng pathologies like sepsis (Haas and McGill, 2022), and countless 

others. AI, with its ability to analyse giant datasets in seconds, is transforming the efficiency 

and accuracy of research in all aspects of science. It has been especially useful in iden;fying, 

predic;ng and analysing novel medicines against countless illnesses. Naturally, the field of 

longevity is not behind in the use of this powerful tool. 

 

AI in Longevity Research 

 

This sec;on will explore the implica;ons of AI in iden;fying biological pathways to target 

with medicines, genera;ng new or repurposing exis;ng compounds for pro-longevity 

purposes, as well as valida;ng and tes;ng them for clinical use.  

 

a. AI and Target Iden-fica-on 

 

The complicated nature of ageing biology (involving interconnected pathways such as 

previously men;oned mTOR, AMPK, senescence and many others) tradi;onally required 

years of laboratory research to find specific druggable targets. This heterogeneous cause of 

age-related diseases o_en leads to poor efficacy of exis;ng interven;ons, in part because of 

inadequate target choice or the inability to find the group of pa;ents who respond best to 

the treatment (Zhavoronkov, 2022). This is where AI can step in.  

 

AI is increasingly being applied to mul;-omics data to dis;nguish new longevity targets. 

Mul;-omics data, consis;ng of genomic (whole genome sequencing), transcriptomic (RNA 

sequencing), proteomic (proteins and their structure) and metabolomic (end products of 
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cellular metabolism) data, change with age (Baião et al., 2025). So_ware PandaOmics, 

developed by Insilico Medicine, iden;fies novel targets by applying deep learning models to 

this mul;modal omics data, as well as evalua;ng background evidence to short-list the most 

promising targets (Kamya et al., 2024).  

 

b. Repurposing and Genera-ng Compounds with AI 

 

The approach of applying machine learning to complex data is also used to iden;fy 

compounds that already exist to be repurposed to target ageing-associated pathways. In 

Ribeiro et al.’s (2023) study, the team trained a machine learning classifier on DrugAge data 

(a database of longevity compounds (Barardo et al., 2017)) to predict not only the chemical 

structure of compounds but also the biological pathways and proteins targeted by the 

molecules. This model can tell whether a certain molecule has lifespan-extending proper;es, 

and demonstrates how AI can simultaneously iden;fy geroprotec;ve medicines and 

generate their mechanis;c hypotheses, highligh;ng the great poten;al for repurposing 

molecules for longevity-related uses (Ribeiro et al., 2023).  

 

AI is also being used to generate new chemical compounds from scratch that exhibit pro-

longevity proper;es. An example of this can be seen in Insilico Medicine, which employs 

deep learning at mul;ple stages of dual-purpose (ageing and age-related diseases) drug 

discovery. A_er iden;fying the biological target with PandaOmics, they employ the 

Chemistry42 plaoorm, which uses a novel AI technique called genera;ve adversarial 

networks (GANs) to create molecules that specifically work on the targets (Insilico Medicine, 

2024; Diamandis, 2022). So far, they have successfully developed a TNIK inhibitor (TNIK is an 

enzyme involved in signal transduc;on, gene transcrip;on, and cytoskeletal organisa;on 

(Na;onal Centre for Biotechnology Informa;on, 2025)) that has been effec;ve at targe;ng 

idiopathic pulmonary fibrosis in both pre-clinical and clinical models.  
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c. Tes-ng and Valida-on with AI 

 

At the very early stages of drug development, many in silico (on a computer or a virtual 

simula;on) tests are conducted to try to predict the success of a certain molecule, prior to in 

vivo tes;ng. A good example of this approach would be Insilico’s InClinico AI plaoorm, which 

can predict the probability of success of the individual trials of their newly generated 

compounds to assess whether they should be tested further (Insilico Medicine, 2020).  

 

AI can also be used to develop new biomarkers to measure the rate of ageing, which is 

especially useful in trials of geroprotec;ve molecules. The previously men;oned epigene;c 

clocks are sta;s;cal models that quan;fy the biological age of an organism; this is achieved 

by analysing DNA methyla;on levels at specific CpG sites (loca;ons within the genome). In 

Dr. Steve Horvath’s first-ever-created epigene;c clock (2013), he employed an elas;c net 

regression ML algorithm to assign how much individual CpG sites correlate with ageing.  

In my own research project, I used a publicly available AI tool ‘ChatGPT’ to apply the Meer et 

al. (2018) epigene;c clock formula to a DNA methyla;on dataset of mice that underwent an 

endurance training program (as well as a control group) to inves;gate exercise’s effect on 

ageing. Despite the inves;ga;on not focusing on pharmacological interven;on, this 

exemplifies how AI improves the efficiency of research by conduc;ng mathema;cal tasks to 

quan;fy the impacts of the interven;on on ageing, as if I chose to perform the calcula;on by 

hand, it would have taken me significantly more ;me.  

 

Lastly, AI plaoorms are embedded within feedback loops. Both posi;ve and nega;ve results 

from in vitro and in vivo trials are analysed by the AI algorithms that repurpose and generate 

new compounds to improve their future predic;ons through ac;ve learning.   

 

d. Case-study: SYDRA Biotech 

 

The co-founder of SYDRA, Dr. Alexander Dakhovnik, has kindly agreed to give me an 

interview about the company’s work on developing geroprotectors using ar;ficial 

intelligence. At SYDRA, they approach the process of drug discovery from a different angle – 
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instead of iden;fying a biological target, they begin with a molecule. They first use an 

ar;ficial neural network (ANN) to iden;fy the promising compound, then test it in silico and 

in C. elegans (roundworms), and only then start the process of pinpoin;ng the biological 

target of the drug. As Dr. Dakhovnik stated in the interview, ‘we decided to reverse engineer 

drug discovery – from phenotype to target, not from target to phenotype’.  

 

The company has developed a novel AI molecule discriminator that predicts whether a 

compound has an;-ageing proper;es. Their ANN, essen;ally being an ‘AI chemist’, was first 

trained on a large database of small molecules and then fine-tuned on a dataset of 

geroprotectors. Using this tool, 11 molecules were iden;fied as safe and likely to prolong 

longevity, 5 of which have shown lifespan prolonga;on of 6-14.5% in C. elegans. Some of 

them were then tested in mice, with 2 being par;cularly successful at lifespan extension, 

achieving an impressive median lifespan elonga;on of 23% and 29% (Dr. Alexander 

Dakhovnik, personal communica;on, August 2025).  

 

The process of in vivo tes;ng of the iden;fied molecules at SYDRA happens in C. elegans 

model organisms and is op;mised using the automated NemaBot roundworm lifespan 

assays. Instead of relying on manual monitoring, SYDRA employs AI to scan and analyse the 

worms’ ac;vity to detect their ageing progression with and without the pharmacological 

interven;on (Dr. Alexander Dakhovnik, personal communica;on, August 2025).  

 

A big challenge faced by SYDRA was the fact that ageing itself is not classified as a disease 

(yet), and therefore cannot be treated directly. As their main goal was to show the extension 

of lifespan, which Dr Dakhovnik believes to be the only valid indicator of true age-targe;ng, 

geroprotec;ve interven;ons, to commercialise the discovered molecule they have to prove 

that the compound treats an FDA-approved age-related disease. To do this, they plan to 

employ whole-genome CRISPR-Cas screenings to iden;fy which proteins were targeted, and 

therefore which age-related disease the compound might affect the most. This approach is 

called a target deconvolu;on.  

 

They have also started to develop another AI model that generates completely novel 

molecules from noise to act as geroprotectors. They have partnered with Enamine to 
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synthesise those generated molecules to test them in vivo, which might produce promising 

results. 

 

The Future of AI in Ageing 

 

There is no doubt that ar;ficial intelligence will play a larger and larger role in the years to 

come. Its use in longevity will decrease the drug discovery ;meline from predic;on to 

clinical tes;ng, by both employing the previously men;oned approaches and discovering 

new ways to streamline the process, compressing the pathway to just a few years or even 

months.  

 

One key future implica;on of AI is personalised medicine. By integra;ng deep learning 

models that work on even larger mul;modal datasets (that might include not only omics 

data but also imaging, clinical history and other variables), the algorithms might be able to 

predict exactly how and which geroprotectors will most likely extend the pa;ent’s lifespan 

and help cure their age-related diseases. 

 

However, there are some challenges to the AI-op;mised drug discovery. A vital limita;on is 

data bias, since most training data for AI may come from small and gene;cally similar 

cohorts, which may not represent the global diversity and beXer suit certain groups of 

people. A big hurdle is the regulatory ins;tu;ons’ (such as the FDA and EMA) slow 

adapta;on to quick progress in AI-found molecules and AI-reliant trial protocols, as well as 

their reluctance to classify ageing as a disease. Due to this, it is difficult for researchers to 

trial their geroprotec;ve molecules in Homo sapiens, which is vital for knowing whether 

they truly prolong human lives.  Another problem that may arise is the accessibility of those 

novel medicines, as there is a risk that they will be expensive and not equally distributed, 

contribu;ng to disparity within society. Nonetheless, the poten;al of AI scaling and 

shortening the molecule discovery process might reduce the costs, contribu;ng to beXer 

equality.  
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Conclusion 

 

As seen by examples provided in this essay, such as enhanced molecule genera;on and 

repurposing, advanced biological target iden;fica;on, and valida;on process op;misa;on, 

AI is already accelera;ng drug discovery at unmatched speeds. The future of the industry 

seems incredibly promising, with countless possible new uses of AI in the field and many yet-

to-come medicines poten;ally extending the lifespans of millions of people.  

 

The biggest takeaway from this is that AI is not here to replace hardworking scien;sts – it is a 

powerful tool that only works alongside qualified specialists to supercharge and, in the case 

of SYDRA, completely change the tradi;onal drug discovery pipeline to open doors to many 

novel pharmacological interven;ons that can prolong healthy human lives. 
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